ریاضیات خوب چیست؟

نوع مقاله : ترجمه

نویسندگان

دانشگاه صنعتی امیرکبیر، دانشکدهٔ ریاضی و علوم کامپیوتر

چکیده

برخی نظرات و تأملات شخصی دربارهٔ اینکه ‎«‎ریاضیات با کیفیت‎»‎ چیست و آیا تعریف دقیق این اصطلاح لازم است. داستان قضیهٔ سِمِرِدی هم به‌عنوان مطالعهٔ موردی ذکر شده است.

کلیدواژه‌ها

موضوعات


‎[1]‎Behrend‎, ‎F‎. ‎A.‎, ‎On sets of integers which contain no three terms in arithmetic progression‎, Proc‎. ‎Nat‎. ‎Acad‎. ‎Sci., ‎32 (1946)‎, ‎331–332‎.
‎[2]‎Bourgain‎, ‎J.‎, ‎On triples in arithmetic progression‎, Geom‎. ‎Func‎. ‎Anal., ‎9 (1999)‎, ‎968-984‎.
‎[3]‎Bourgain‎, ‎J.‎, ‎Roth’s theorem on arithmetic progressions revisited‎, ‎(preprint)‎.
‎[4]‎Erdos‎, ‎P.‎, ‎Turan‎, ‎P.‎, ‎On some sequences of integers‎, ‎{J‎. ‎London Math‎. ‎Soc., ‎11 (1936)‎, ‎261–264‎.
‎[5]‎Furstenberg‎, ‎H.‎, ‎Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions‎, J‎. ‎Analyse Math., ‎31 (1977)‎, ‎204–256‎.
‎[6]‎Furstenberg‎, ‎H.‎, ‎Recurrence in Ergodic Theory and Combinatorial Number Theory, ‎Princeton University Press‎, ‎Princeton NJ‎, ‎1981‎.
‎[7]‎Furstenberg‎, ‎H‎. ‎Katznelson‎, ‎Y.‎, ‎Ornstein‎, ‎D.‎, ‎The ergodic theoretical proof of Szemeredis theorem‎, ‎Bull‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎7 (1982)‎, ‎527–552‎.
‎[8]‎Goldston‎, ‎D.‎, ‎Yıldırım‎, ‎C.‎, ‎Small gaps between primes‎, ‎I‎, ‎(preprint)‎.
‎[9]‎Goldston,D‎. ‎A.‎, ‎Pintz‎, ‎J.‎, ‎Yıldırım‎, ‎C.Y.‎, ‎Small gaps between primes II‎, ‎(preprint)‎.
[10]Gowers, T., Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Func. Anal., 7
(1997), 322–337.
[11]Gowers, T. A, New proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom.
Func. Anal., 8 (1998), 529–551.
[12]Gowers, T., The two cultures of mathematics, in Mathematics: Frontiers and Perspectives, International
Mathematical Union, V. Arnold, M. Atiyah, P. Lax, B. Mazur, eds., American Mathematical
Society, Providence, RI, 2000.
[13]Gowers, T., A new proof of Szemerédi’s theorem, Geom. Func. Anal., 11 (2001), 465-588.
[14]Gowers, T., Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab.
Comput., 15 (2006) , 143–184.
[15]Green, B. J., Roth’s theorem in the primes, Ann. of Math., 161 (2005), 1609–1636.
[16]Green, B. J., A Szemerédi-type regularity lemma in abelian groups, Geom. Func. Anal., 15 (2005),
340–376.
[17]Green, B. J., Tao, T., The primes contain arbitrarily long arithmetic progressions, Ann. Math.
[18]Hales, A. W., Jewett, R. I., Regularity and positional games, Trans. Amer. Math. Soc., 106 (1963),
222–229.
[19]Heath-Brown, D. R., Three primes and an almost prime in arithmetic progression, J. London Math.
Soc., (2), 23 (1981), 396–414.
[20]Host, B. Kra, B., Non-conventional ergodic averages and nilmanifolds, Ann. of Math., 161 (2005),
397–488.
[21]Kohayakawa, Y., Luczak, T., Rodl, V., Arithmetic progressions of length three in subsets of a random
set, Acta Arith., 75 (1996), 133–163.
[22]Nagle, B., Rodl, V., Schacht, M., The counting lemma for regular k-uniform hypergraphs,
[23]Ramsey, F. P., On a problem of formal logic, Proc. London Math. Soc., 30 (1930), 264–285.
[24]Rodl, V., Schacht, M. Regular partitions of hypergraphs,
[25]Rodl, V., Skokan, J., Regularity lemma for k-uniform hypergraphs, Random Structures and Algorithms,
25, no. 1 (2004), 1–42.
[26]Rodl, V., Skokan, J., Regularity lemma for k-uniform hypergraphs, Random Structures and Algorithms,
25, no. 1 (2004), 1–42.
[27]Roth, K. F., On certain sets of integers, J. London Math. Soc., 28 (1953), 245-252.
[28]Roth, K. F., Irregularities of sequences relative to arithmetic progressions, IV, Period. Math. Hungar,
2 (1972), 301–326.
[29]Ruzsa, I., Szemerédi, E., Triple systems with no six points carrying three triangles, Colloq. Math.
Soc. J. Bolyai, 18 (1978), 939–945.
[30]Ruzsa, I., Szemerédi, E., Triple systems with no six points carrying three triangles, Colloq. Math.
Soc. J. Bolyai, 18 (1978), 939–945.
[31]Szemerédi, E., On sets of integers containing no four elements in arithmetic progression, Acta Math.
Acad. Sci. Hungar., 20 (1969), 89–104.
[32]Szemerédi, E., On sets of integers containing no k elements in arithmetic progression, Acta Arith.,
27 (1975), 299–345.
[33]Tao, T., The dichotomy between structure and randomness, arithmetic progressions, and the primes,
in Proceedings of ICM 2006,
[34]Tao, T. A quantitative ergodic theory proof of Szemerédi’s theorem,
[35]Tao T., Vu, V., Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006.
[36]van der J. G., Corput, ¨Uber Summen von Primzahlen und Primzahlquadraten, Math. Ann., 116
(1939), 1–50.
[37]van der Waerden, B. L., Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk., 15 (1927), 212–
216.
[38]Wigner, E., The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Comm. Pure
Appl. Math., 13 (1960)
[39]Ziegler, T., Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20
(2007), 53-97.
 
 
 
[10]‎Wigner‎, ‎E.‎, ‎The Unreasonable Effectiveness of Mathematics in the Natural Sciences‎, Comm‎. ‎Pure Appl‎. ‎Math., 13 (1960)‎
‎[11]‎Ziegler‎, ‎T.‎, ‎Universal characteristic factors and Furstenberg averages‎, J‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎20 (2007)‎, ‎53-97‎.