تاریخچۀ بی نهایت کوچکها و بی نهایت بزرگها در حساب دیفرانسیل و انتگرال

نوع مقاله : ترجمه

نویسندگان

1 دانشگاه کاشان - دانشکده علوم ریاضی

2 دانشگاه زنجان، دانشکده علوم، گروه ریاضی

چکیده

دو مفهوم بی نهایت کوچک و بی نهایت بزرگ در حساب دیفرانسیل و انتگرال اهمیت اساسی دارند و در طول تاریخ به صورت های گوناگونی ظاهر شده اند. آنها هم از جنبۀ فنی و هم از جنبۀ مفهومی برای حساب دیفرانسیل و انتگرال اهمیت بنیادی داشته اند؛ یعنی هم به منزلۀ ابزارهای اصلی حساب دیفرانسیل و انتگرال و هم به منزلۀ شالوده های بنیادی آن بوده اند. در این مقاله، برای این جنبه های ب ینهای ت کوچک ها و بی نهایت بزرگ ها مثال هایی ذکر خواهیم کرد که در تاریخ حسابدیفرانسیل و انتگرال طی قرن های هفدهم تا بیستم ظاهر شده اند.

کلیدواژه‌ها


Andersen, K., Cavalieri’s method of indivisibles, Archive for History of the Exact Sciences, 31 (1985), 291–367. 
Baron, M. E., The Origins of the Infinitesimal Calculus, Dover, New York, 1987.
Bell, E. T., The Develoment of Mathematics, McGraw-Hill, New York, 1945.
Bell, J. L., Infinitesimals, Synthesis, 75 (1988), 285–315.
Bos, H. J. M., Differentials, higher order differentials and the derivative in the Leibnizian calculus, Archive for History of the Exact Sciences, 14 (1974), 1–90.
Bottazzini, U., The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, New York, 1986.
Boyer, C. B., The History of the Calculus and its Conceptual Development, Dover, New York, 1959.
Boyer, C. B., Cavalieri, limitis and discarded infinitsimals, Scripta Mathematica, 8 (1941), 79–91.
Bressoud, D., A Radical Approach to Real Analysis, Mathematical Association of America, Washington, DC., 1994.
Cajori, F., Indivisibles and “ghosts of departed quantities” in the history of mathematics, Scientia, 37 (1925), 301–306.
Cajori, F., Grafting of the theory of limits on the calculus of Leibniz, American Mathematical Monthly, 30 (1923), 223–234.
Cajori, F., Discussion of fluxions: from Berkeley to Woodhouse, American Mathematical Monthly, 24 (1917), 145–154.
Calinger, R. (ed.), Vita Mathematics: Historical Research and Integration with Teaching, Mathematical Association of America, Washington, DC., 1996.
Dauben, J. W., Abraham Robinson and nonstandard analysis: History, philosophy, and foundations of mathematics, in Aspray, A., Kitcher, P. (eds.), History and Philosophy of Modern Mathematics, University of Minnesota Press, 177–200.
Davis, M., Hersh, R., Nonstandard analysis, Scientific American, 226 (1972), 78-86.
Dedekind, R., Essays on the Theory of Numbers, Dover, New York, 1963.
Dudley, U. (ed.), Readings from Calculus, Mathematical Association of America, Washington, DC., 1993.
Dunham, W., Journey Through Genesis: The Great Theorems of Mathematics, John Wiley & Sons, New York, 1990.
Edwards, C. H., The Historical Development of the Calculus, Springer-Verlag, New York, 1979.
Eves, H., Great Moments in Mathematics, 2 vols., Mathematical Association of America, Washington, DC., 1983.
Fauvel, J. (ed.), The use of history in teaching mathematics, special issue of For the Learning of Mathematics, 11 (1991), no. 2.
Fauvel, J. (ed.), History in the Mathematics Classroom: The IREM Papers, vol. 1, The Mathematical Association, London, 1990.
Fauvel, J., van Mannen, J., (eds.), History of Mathematics Education: The ICMI Study, Kluwer Academic Publishers, Dordrecht, 2000.
Fraser, C., The calculus as algebraic ananlysis: some observations on mathematical analysis in the 18th century, Archive for History of the Exact Sciences, 39 (1989), 317–335.
Grabiner, J. W., Who gave you the epsilon? Cauchy and the origins of rigorous calculus, American Mathematical Monthly, 90 (1983a), 185–194.
Grabiner, J. W., The changing concept of change: The derivative from Fermat to Weierstrss, Mathematics Magazine, 56 (1983b), 195–206.
Grabiner, J. W., The Origins of Cauchy’s Rigorous Calculus, MIT Press, Cambridge, Mass, 1981.
Grattan-Guinness, I. (ed.), From the Calculus to Set Theory: 1630-1910, Duckworth, London, 1980.
Grattan-Guinness, I., The Development of the Foundations of Mathematical Analysis from Euler to Riemann, MIT Press, Cambridge, Mass., 1970.
Hairer, E., Wanner, G., Analysis by Its History, Springer-Verlag, New York, 1996.
Harnik, V., Infinitesimals from Leibniz to Robinson: Time to bring them back to school, Mathematical Intelligencer, 8 (1986), no. 2, 41–47, 63.
Kalman, K., Six ways to sum a series, College Mathematics Journal, 24 (1993), 402–421.
Katz, V. J. (ed.), Using History to Teach Mathematics: An International Perspective, Mathematical Association of America, Washington, DC., 2000.
Katz, V. J., A History of Mathematics, 2nd ed., Addison-Wesley, New York, 1998.
Keisler, J., Elemantary Calculus: An Infinitesimal Approach, 2nd ed., Prindle, Weber & Schmidt, Boston, 1986.
Keisler, J., Foundations of Infinitesimal Calculus, Prindle, Weber & Schmidt, Boston, 1976.
Kitcher, P., The Nature of Mathematical Knowledge, Oxford University Press, New York, 1983.
Kitcher, P., Fluxions, limitis, and infinite littleness: A study of Newtons’s presentation of the calculus, Isis, 64 (1973), 33–49.
Kline, M., Euler and infinite series, Mathematics Magazine, 56 (1983), 307–314.
Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972.
Lakatos, I., Cauchy and the continuum: The significance of non-standard analysis for the history and philosophy of mathematics, Mathematical Intelligencer, 1 (1978), 151–161.
Langer, R. E., Fourier series: The gensis and evolution of a theory, American Mathematical Monthly, 54 (1947), 1–86.
Laubenbacher, R., Pengelley, D., Mathematical Expeditions: Chronicles by the Explorers, Springer-Verlag, New York, 1999.
Laugwitz, D., On the historical development of infinitesimal mathematics (I and II), American Mathematical Monthly, 104 (1997), 445–455, 660–669.
MacKinnon, N. (ed.), Use of the history of mathematics in the teaching of the subject, special issue of Mathematical Gazzette, 76 (1992).
May, K. O., History in the mathematical curriculum, American Mathematical Monthly, 81 (1974), 899–901.
NCTM, Historical Topics for the Mathematics Classroom, 2nd. ed., National Council of Teachers of Mathematics, Reston, Virginia, 1989.
Pimm, D., Why the history and philosophy of mathematics should not be rated X, From the Learning of Mathematics, 3 (1982), 12–15.
Polya, G., Mathematical Discovery, combined ed., John Wiley & Sons, New York, 1962.
Robinson, A., Non-standard Analysis, North-Holand, Amsterdam, 1966.
Roy, R., The discovery of the series formula for π by Leibniz, Gregory, and Nilakantha, Mathematics Magazine, 63 (1990), 291–306.
Simmons, G. F., Calculus Gems: Brief Lives and Memorable Mathematics, McGraw-Hill, New York, 1992.
Simmons, G. F., Differential Equations, McGraw-Hill, New York, 1972.
Stahl, S., Real Analysis: A Historical Approach, John Wiley & Sons, NEw York, 1999.
Steen, L. A., New Models of the Real-Number Line, Scientific American, 225 (1971), 92–99.
Stillwell, J., Mathematics and Its History, Springer-Verlag, New York, 1989.
Struik, D. J., A Concise History of Mathematics, 4th. edn., Dover, New York, 1989.
Swetz, F., et al. (eds.), Learn from Masters, Mathematical Association of America, Washington, DC., 1995.
Toeplitz, O., The Calculus: A Genetic Approach, The University of Chicago Press,
Chicago, 1963.
Vilenkin, N. Y., In Search of Infinity, translated from Russian by A. Shenitzer, Birkhäuser, Boston, 1995.
Wilder, R. L., History in the mathematics curriculum: Its status, quality, and function, American Mathematical Monthly, 79 (1972), 479–495.
Young, R. M., Excursions in Calculus, Mathematical Association of America, Washington, DC., 1992.